热门搜索: 中考 高考 考试 开卷17
服务电话 024-23945002/96192
 

Python贝叶斯深度学习

编号:
wx1203390209
销售价:
¥70.22
(市场价: ¥79.80)
赠送积分:
70
数量:
   
商品介绍

深度学习正日益深刻地渗入我们的生活,从建议内容到在任务关键型和安全关键型应用中发挥核心作用,其影响无所不在。然而,随着这些算法影响力的逐渐扩大,人们对于依赖这些算法的系统安全性和鲁棒性的担忧也日益加剧。简言之,传统的深度学习方法往往难以察觉自身的知识边界,即它们“不知其所不知”。贝叶斯深度学习(Bayesian Deep Learning,BDL)领域包含一系列利用深度网络进行近似贝叶斯推理的方法。这些方法通过揭示模型对其预测结果的置信度,增强了深度学习系统的鲁棒性,使我们能够更谨慎地将模型预测融入实际应用中。《Python贝叶斯深度学习》将引领你踏入迅速发展的不确定性感知深度学习领域,助你深入理解不确定性估计在构建鲁棒性的机器学习系统中的重要价值。你将学习多种流行的BDL方法,并通过涵盖多种应用场景的Python实用示例来掌握这些方法的实现技巧。读完本书后,你将深刻理解BDL及其优势,并能够为更安全、更鲁棒的深度学习系统开发贝叶斯深度学习模型。

"Matt Benatan博士是搜诺思(Sonos)的首席研究科学家,主要负责智能个性化系统的研究。他还获得了曼彻斯特大学的西蒙工业奖学金,并在那里合作开展了多个人工智能研究项目。Matt在利兹大学获得了视听语音处理博士学位,之后进入工业界,在信号处理、材料发现和欺诈检测等多个领域开展机器学习研究。Matt曾与他人合著了Wiley出版社出版的Deep learning for Physical Scientists一书,他目前的主要研究兴趣包括面向用户的人工智能、优化和不确定性估计。 Matt不仅要对妻子Rebecca的关心、耐心和支持深表感激,也要对父母Dan和Debby的不懈热情、指导和鼓励深表感激。 Jochem Gietema在阿姆斯特丹学习哲学和法律,毕业后转入机器学习领域。他目前在伦敦的Onfido公司担任应用科学家,在计算机视觉和异常检测领域开发并部署了多项专有的解决方案。Jochem热衷于研究不确定性估计、交互式数据可视化以及用机器学习解决现实世界中的问题。 Marian Schneider博士是机器学习和计算机视觉领域的应用科学家。他在马斯特里赫特大学获得了计算视觉神经科学博士学位。此后,他从学术界转入工业界,开发了一些机器学习解决方案并将其应用于多种产品,涵盖从大脑图像分割到不确定性估计,再到移动电话设备上更智能的图像获取等方面。 Marian非常感谢他的伴侣Undine,因为在本书的写作过程中Undine给予了他大力支持,尤其是在周末的宝贵时光里陪伴他,从而使本书的写作工作得以顺利进行。 "

第1章深度学习时代的贝叶斯推理

1.1技术要求

1.2深度学习时代的奇迹

1.3了解深度学习的局限性

1.3.1深度学习系统中的偏见

1.3.2过高置信预测导致危险

1.3.3变化趋势

1.4核心主题

1.5设置工作环境

1.6小结

第2章贝叶斯推理基础

2.1重温贝叶斯建模知识

2.2通过采样进行贝叶斯推理

2.2.1近似分布

2.2.2利用贝叶斯线性回归实现概率推理

2.3探讨高斯过程

2.3.1用核定义先验信念

2.3.2高斯过程的局限性

2.4小结

2.5延伸阅读

……

商品参数
基本信息
出版社 清华大学出版社
ISBN 9787302672166
条码 9787302672166
编者 (英)马特·贝纳坦,(英)约赫姆·吉特马,(英)玛丽安·施耐德 著 郭涛 译
译者 郭涛
出版年月 2024-10-01 00:00:00.0
开本 32开
装帧 平装
页数 456
字数 356000
版次 1
印次 1
纸张 一般胶版纸
商品评论

暂无商品评论信息 [发表商品评论]

商品咨询

暂无商品咨询信息 [发表商品咨询]