热门搜索: 中考 高考 考试 开卷17
服务电话 024-23945002/96192
 

2册 机器学习+《机器学习》习题参考

编号:
wx1203771283
销售价:
¥186.30
(市场价: ¥207.00)
赠送积分:
186
数量:
   
商品介绍

《机器学习》
"击败AlphaGo的武林秘籍;赢得人机大战的必由之路。回答了有关机器学习的六大疑问,浅显生动,外行也能读懂。既道出了机器学习的前世今生,又展望了机器学习的未来发展,让道听途说的信息止于智者。
"
《《机器学习》习题参考》
本书是配套周志华教授所著的《机器学习》教材的习题集和教学参考书,通过大量习题考查读者对机器学习相关知识点的理解与掌握。全书分为两个部分:第一部分习题对应《机器学习》第1-10章的内容,包括绪论、模型评估与选择、线性模型、决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习;第二部分包含6章应用专题,通过综合题的形式对知识点进行多角度考查,包括线性模型的优化与复用、面向类别不平衡数据的分类、神经网络的优化与应用、EM算法及其应用、集成学习的过拟合现象研究、度量学习及其应用。书中包含简答题、计算题和编程题,涵盖不同难度级别。机器学习初学者可以通过这些习题深入了解和巩固教材的关键概念,对机器学习有一定基础的读者也可以通过习题发现对一些知识点不同角度的解读,为后续机器学习的深入研究打下基础。
本书面向“西瓜书”《机器学习》教材读者以及广大机器学习爱好者,可作为高等院校人工智能、计算机、自动化及相关专业的本科生或研究生的教学辅助书籍,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考。

《机器学习》
机器学习是计算机科学的重要分支领域.本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面.全书共16章,大致分为3个部分:第1部分(第1~3章)介绍机器学习的基础知识;第2部分(第4~10章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第3部分(第11~16章)为进阶知识,内容涉及特征选择与稀疏学习、计算学习理论、半监督学习、概率图模型、规则学习以及强化学习等.每章都附有习题并介绍了相关阅读材料,以便有兴趣的读者进一步钻研探索.本书可作为高等院校计算机、自动化及相关专业的本科生或研究生教材,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考.
《《机器学习》习题参考》
机器学习是人工智能的核心领域之一,本书配套周志华教授所著的《机器学习》教材,通过大量习题考查读者对机器学习相关知识点的理解与掌握。本书分为两个部分:第一部分习题对应《机器学习》第1~10章的内容,包括绪论、模型评估与选择、线性模型、决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习;第二部分包含6章应用专题,通过综合题的形式对知识点进行多角度考查,包括线性模型的优化与复用、面向类别不平衡数据的分类、神经网络的优化与应用、EM算法及其应用、集成学习的过拟合现象研究、度量学习及其应用。书中包含简答题、计算题和编程题,涵盖不同难度级别。机器学习初学者可以通过这些习题深入了解和巩固教材的关键概念,对机器学习有一定基础的读者也可以通过习题发现对一些知识点不同角度的解读,为后续机器学习的深入研究打下基础。本书面向《机器学习》读者以及广大机器学习爱好者,可作为高等院校人工智能、计算机、自动化及相关专业的本科生或研究生的教学辅助书籍,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考。

《机器学习》
周志华 教授,南京大学计算机系主任、人工智能学院院长、校学术委员会委员。欧洲科学院外籍院士。人工智能相关五大主流国际学会ACM、AAAI、AAAS、IEEE、IAPR均入选Fellow的首位华人学者,中国计算机学会、中国人工智能学会会士。曾获IEEE计算机学会Edward J. McCluskey技术成就奖、CCF王选奖等。

《机器学习》
《《机器学习》习题参考》
【注】本套装以商品标题及实物为准,因仓位不同可能会拆单发货,如有需要购买前可联系客服确认后再下单,谢谢!

商品参数
基本信息
出版社 清华大学出版社等
ISBN 9787302423287
条码 9787302423287
编者 周志华 著等
译者
出版年月 2016-01-01 00:00:00.0
开本 20开
装帧 平装
页数 560
字数 626000
版次 1
印次 35
纸张
商品评论

暂无商品评论信息 [发表商品评论]

商品咨询

暂无商品咨询信息 [发表商品咨询]