热门搜索: 中考 高考 考试 开卷17
服务电话 024-23945002/96192
 

大模型赋能工业应用

编号:
wx1204269286
销售价:
¥87.12
(市场价: ¥99.00)
赠送积分:
87
数量:
   
商品介绍


本书基于作者团队的多年实践经验,给出了一套经过实践验证的、行之有效的大模型赋能工业应用方法论。本书共10章:第1~3章系统梳理了工业智能化的需求、大语言模型的技术发展脉络;第4~8章聚焦大语言模型在领域化应用的探索,分析大模型落地工业应用的主要挑战、工业场景中大模型能力的测评策略和方法、深入探讨大语言模型工业实践的具体案例,并升级了企业实施知识工程的方法论;第9~10章探讨了工业智能的前沿技术方向,并展望其在智能工厂的创新应用,为工业智能的未来发展提供前瞻性的思考与方向指引。

史晓凌,工业技术软件化产业联盟知识工程专委会主任、创新方法研究会AI专委会秘书长、国际TRIZ三级专家。拥有20年创新方法与知识工程、知识图谱及大模型的理论研究与实践经验。擅长为企业数字化转型和工业软件智能化升级提供总体方案与落地实施。主持及参与国家及省部级课题10余项,出版专著15部,拥有发明专利9项,参与制定国家标准4项。

茹海燕,国际TRIZ三级专家、6sigma黑带。拥有20余年知识工程、人工智能、创新方法和数字化转型领域的咨询、产品研发及定制化实施经验。擅长引导企业开展知识工程规划和实践,推动管理转型。服务的多家跨行业客户获得国际、国内MIKE奖和最佳运营奖。参与撰写国家标准3项,发表国内外论文10余篇,出版书籍10余部,拥有专利授权8项。

谭培波,高级工程师、国际TRIZ三级专家、6sigma黑带。深耕通信领域20年,专注于知识工程与创新工作18年。在卫星通信、射频技术、知识工程、创新创意及质量改进等方向积累了丰富的探索、设计与实践经验,近年来聚焦于大模型和Agent项目的实施,对人工智能技术与创新方法的融合应用有深入且独到的见解。已发表核心期刊论文4篇,获授权专利10余项,参与撰写书籍10部、参与制定国家标准4项。

张学龙,长期从事技术研发工作,专注于人工智能软件研发领域。主导知识图谱、知识工程、数字化工厂及行业大模型等产品的研发。对国内外大模型发展有深入的理解,创新性地融合知识图谱与大模型技术,支持其在企业成功落地应用。参与制定国资委组织的油气行业大模型测评体系。在人工智能技术领域获授权发明专利8项、实用新型专利2项。

柳晶晶,创新方法研究会AI专委会副秘书长、高级工程师。长期从事知识工程、知识图谱与大模型等技术的理论研究和产品研发,以及赋能企业业务转型与升级实战工作,拥有10余年行业经验。出版专著3部,发表文章2篇,拥有发明专利8项。

丛书前言

前言

第1章AI驱动的工业创新范式

1.1传统科研方法的局限性与AI的崛起/1

1.1.1传统科研方法/1

1.1.2企业对科研方法创新的迫切需求/3

1.1.3AI的发展推动技术突破/4

1.2数据密集型科学与AI驱动的创新/6

1.2.1第四范式:数据密集型科学/6

1.2.2AI驱动的数据分析创新/7

1.3AI推动跨学科研究与复杂系统优化/11

1.3.1工业复杂系统的多学科协同需求/11

1.3.2AI推动跨学科协同/14

1.4生成式AI与创新设计/17

1.4.1创新设计的方法论/17

1.4.2TRIZ在工业领域中的困境/19

1.4.3生成式AI在创新设计中的应用/24

1.5科研与创新生态系统的构建/26

第2章大模型驱动的工业智能

2.1工业智能的演进/29

2.1.1从规则驱动到数据驱动/30

2.1.2从数据驱动到语言驱动/34

2.1.3大语言模型的认知涌现/35

2.2语言模型的突破/36

2.2.1从统计语言模型到神经网络模型/36

2.2.2Transformer架构的突破性创新/37

2.2.3参数规模与涌现能力/39

2.2.4科学研究第五范式:语言范式/42

2.3基于LLM的工业应用技术路线/44

2.3.1莫拉维克悖论/44

2.3.2生成式不仅是算法也是方法/46

2.3.3生成式工业应用的技术路线/47

2.3.4知识图谱是生成式工业应用成败的关键/48

第3章LLM的技术演进路径

3.1LLM的数学基础/51

3.1.1概率论与信息论语言模型/51

3.1.2优化算法的理论突破/53

3.1.3分布式计算的数学建模/53

3.2GPT是LLM工业应用的起点/54

3.2.1Transformer架构的范式革命/54

3.2.2自监督学习的预训练/56

3.2.3MOE实现业务小模型与LLM的融合/57

3.3DeepSeek类推理模型将机理融入工业LLM/59

3.3.1动态稀疏激活机制/60

3.3.2多模态融合架构/61

3.3.3模型压缩技术创新/61

3.3.4机理模型构建强化学习语料/62

3.4智能体在工业领域的应用/65

3.4.1AI发展的新阶段:智能体/65

3.4.2微软的智能体框架/66

3.4.3LLM在智能体中的定位/68

3.4.4工业智能体的特点/68

第4章LLM为工业应用赋智

4.1工业软件的智能化需求/71

4.1.1中国工业软件的发展现状/71

4.1.2工业软件的知识化:从知识管理到AI驱动的精准应用/73

4.1.3工业软件的智能化:从现状到未来/75

4.2LLM领域化应用的设计/77

4.2.1需求理解/77

4.2.2场景设计/77

4.2.3知识工程设计/78

4.3LLM领域化应用的设计原则/79

4.3.1原则一:多模态数据协同与融合/80

4.3.2原则二:数据驱动实时优化/80

4.3.3原则三:自然语言交互优化体验/81

4.3.4原则四:主动学习积累知识/81

4.3.5原则五:模块化、可扩展与自适应/82

4.4LLM领域化应用案例/82

4.4.1复杂工艺参数优化与动态控制/82

4.4.2跨模态质量检测与缺陷溯源/83

4.4.3智能供应链协同与自主决策/83

4.5未来工业软件的发展趋势/84

第5章LLM应用于工业领域的挑战

5.1数据依赖与安全风险/87

5.1.1数据依赖与领域迁移瓶颈/87

5.1.2模型训练阶段的数据安全风险/89

5.1.3模型推理阶段的数据泄露威胁/90

5.1.4全流程数据安全防护体系构建/91

5.2模型的可解释性与透明度/92

5.2.1模型可解释性缺失的根源分析与发展方向/92

5.2.2知识图谱与机理模型的显性知识约束机制/94

5.2.3大语言模型与专业工具的协同推理架构/94

5.2.4多模态可解释性增强技术体系/95

5.2.5可信工业智能系统的构建实例/95

5.3工业场景中的计算资源限制/100

5.3.1实时推理效率与资源消耗/100

5.3.2面向工业场景的模型轻量化策略/102

5.3.3机理模型与LLM的混合建模架构/103

5.3.4动态协同计算架构设计/104

5.4模型更新与维护的挑战/105

5.4.1模型更新策略的经济性与技术性矛盾/105

5.4.2封闭环境下的模型维护与更新机制/108

5.4.3模型版本迭代的风险控制体系/110

5.5工业应用中的伦理与法律问题/112

5.5.1大模型的安全伦理风险/112

5.5.2人机协作模式下的社会伦理重构/113

5.5.3知识产权边界的模糊化挑战/115

5.5.4合规性风险的自适应治理难题/116

第6章LLM工业应用能力评测

6.1LLM评测的指标体系/120

6.1.1基础能力评测指标/120

6.1.2场景能力评测指标/121

6.1.3工程化特性评测指标/124

6.2自动化评测工具与方法/127

6.2.1评测流程设计/128

6.2.2自动评测工具/129

6.2.3指标评测方法/133

6.3人类反馈与评测的结合/136

6.3.1基于专家知识的多维度反馈标注体系/136

6.3.2动态反馈权重的自适应调节机制/137

6.3.3反馈驱动的持续学习与评测闭环系统/137

6.4分阶段评测策略与实例/138

6.4.1LLM分阶段评测策略/138

6.4.2LLM分阶段评测实例/140

6.5工业应用中的LLM评测挑战/152

6.5.1数据稀缺性与领域适配的挑战/152

6.5.2动态工业环境下的评测鲁棒性挑战/152

6.5.3评测结果的可信度与可解释性挑战/153

6.5.4领域专家依赖性与评测一致性的挑战/153

6.6评测方法的未来趋势/154

6.6.1动态自适应评测框架的构建与优化/155

6.6.2可解释性增强评测体系的深化发展/155

6.6.3隐私保护联邦评测范式的创新突破/156

第7章LLM工业应用实施方法论

7.1工业应用智能化的企业实施方法论/158

7.1.1企业实施知识工程方法论DAPOSI/159

7.1.2大语言模型与知识图谱/161

7.1.3大模型升级企业实施方法论/164

7.2可行性研究/167

7.2.1需求收集/167

7.2.2需求分析/171

7.2.3可行性评估/174

7.3数据处理/176

7.3.1数据采集/178

7.3.2数据清洗/178

7.3.3语料标注/182

7.3.4知识加工/193

7.3.5知识存储/195

7.4模型训练/197

7.4.1基础大模型选择/197

7.4.2算力资源准备/200

7.4.3领域模型训练/201

7.4.4知识注入模型/209

7.5系统部署/212

7.5.1资源准备与系统部署/212

7.5.2现场实施/212

7.6持续优化/220

7.6.1常见问题/221

7.6.2检测机制/222

7.6.3纠正与优化/223

7.6.4资源配置/223

7.6.5未来趋势/224

第8章LLM在工业领域的应用案例

8.1办公应用/225

8.1.1智能会议管家/225

8.1.2通用公文撰写/229

8.2科研应用/233

8.2.1行业知识管理与智能问答/233

8.2.2科研报告生成/240

8.2.3专业报告总结/243

8.2.4翻译助手/247

8.3生产应用/250

8.3.1生产数据的智能问答/250

8.3.2设备健康管理与预测性维护/255

8.3.3生产优化智能体/258

第9章工业智能的未来新技术

9.1量子计算与大模型/263

9.1.1量子叠加与纠缠特性加速LLM训练/263

9.1.2将语言等效为物理问题/264

9.1.3量子–经典混合架构的系统设计/265

9.2边缘计算与分布式AI/265

9.2.1边缘智能的实时性优化/265

9.2.2分布式AI的协同训练与推理/266

9.2.3边缘–云协同架构的设计与优化/266

9.3新型硬件加速技术/267

9.3.1专用AI芯片架构创新/267

9.3.2存算一体技术突破/267

9.3.3光电子与量子混合加速技术/268

第10章工业智能的未来方法与新应用

10.1工业智能的未来方法/269

10.1.1复杂系统建模的理论突破/269

10.1.2自主协同决策的算法框架/270

10.1.3人机共生的智能架构设计/271

10.2工业智能的新应用/271

10.2.1智能工厂的自主优化系统/271

10.2.2跨行业知识迁移的智能解决方案/272

10.2.3可持续制造的智能闭环系统/273

商品参数
基本信息
出版社 机械工业出版社
ISBN 9787111798491
条码 9787111798491
编者 史晓凌 等 著 著
译者 --
出版年月 2026-01-01 00:00:00.0
开本 16开
装帧 平装
页数 273
字数 333000
版次 1
印次 1
纸张
商品评论

暂无商品评论信息 [发表商品评论]

商品咨询

暂无商品咨询信息 [发表商品咨询]