热门搜索: 中考 高考 考试 开卷17
服务电话 024-96192/23945006
 

套装4册 机器学习+零基础学机器学习+机器学习的数学+机器学习公式详解

编号:
wx1202321422
销售价:
¥310.24
(市场价: ¥356.60)
赠送积分:
310
数量:
   
商品介绍

《机器学习的数学》
·上海交通大学特别研究员、阿里巴巴、百度算法专家、优酷首席科学家、谷歌机器学习开发者专家力荐教材
·透彻地理解机器学习算法,从数学层面搞懂这些核心算法原理的逻辑,具备推导和证明算法的能力
·在解决人工智能工程实践的问题中,能够用数学知识进行分析和建模
·精准覆盖人工智能领域中机器学习、深度学习、强化学习相关的数学知识
·从机器学习应用的角度讲授数学,让数学在机器学习中的应用无缝衔接
·涵盖概率论、信息论、很优化方法等机器学习中的目标函数构造、模型优化以及各种机器学习算法的核心知识
·囊括了微积分和线性代数等基本数学知识
《机器学习》
"击败AlphaGo的武林秘籍;赢得人机大战的必由之路。回答了有关机器学习的六大疑问,浅显生动,外行也能读懂。既道出了机器学习的前世今生,又展望了机器学习的未来发展,让道听途说的信息止于智者。
"
《零基础学机器学习》
——零基础入门机器学习技术,该怎么学?
——面对机器学习庞大的知识体系,觉得无法上手?
——人工智能的算法、理论、技术好抽象,总是看不懂?
如果你遇到了这些问题,那么这本机器学习“小白书”正是你的选择——“硬核”的机器学习书也可以很有趣!

1.本书以AI菜鸟“小冰”拜师程序员“咖哥”为背景,精心设计了一条贴合零基础读者的入门路线。
2.本书强调实战,书中的案例都源自真实项目,方便读者动手操作和应用,连接入门与业务,力求让大家快速领会机器学习内涵,从而拥有在人工智能领域深耕的能力。
3.所有案例均通过Python及Scikit-learn 机器学习库和Keras 深度学习框架实现,同时还包含丰富的数据分析和数据可视化内容。
4.为读者提供配套全书源代码、和大量案例数据集下载。
《机器学习公式详解》
1.靠前市场累计销量靠前的“西瓜书”《机器学习》公式接近解析指南!
“南瓜书”系Datawhale成员自学笔记,对“西瓜书”中250个重难点公式做了详细解析和推导(重难点公式覆盖率达99%),旨在解决机器学习中的数学难题。
2.机器学习初学小白提升数学基础能力的推荐练习册!
以本科数学基础视角对“西瓜书”里比较难理解的公式加以解析和推导细节,补充大量重、难点数学知识和参考材料,分享在学习中遇到的“坑”以及跳过这个“坑”的方法,对于初学机器学习的小白也能上手练习!
3.俞勇、王斌、李沐、程明明、陈光(博主@爱可可-爱生活)、徐亦达等人工智能领域大咖亲笔推荐

《机器学习的数学》
本书的目标是帮助读者全面、系统地学习机器学习所必须的数学知识。全书由8章组成,力求精准、很小地覆盖机器学习的数学知识。包括微积分,线性代数与矩阵论,**化方法,概率论,信息论,随机过程,以及图论。本书从机器学习的角度讲授这些数学知识,对它们在该领域的应用举例说明,使读者对某些抽象的数学知识和理论的实际应用有直观、具体的认识。 本书内容紧凑,结构清晰,深入浅出,讲解详细。可用作计算机、人工智能、电子工程、自动化、数学等相关专业的教材与教学参考书。对人工智能领域的工程技术人员与产品研发人员,本书也有很强的参考价值。对于广大数学与应用的数学爱好者,本书亦为适合自学的读本。
《机器学习》
机器学习是计算机科学的重要分支领域.本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面.全书共16章,大致分为3个部分:靠前部分(靠前~3章)介绍机器学习的基础知识;第2部分(第4~10章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第3部分(靠前1~16章)为进阶知识,内容涉及特征选择与稀疏学习、计算学习理论、半监督学习、概率图模型、规则学习以及强化学习等.每章都附有习题并介绍了相关阅读材料,以便有兴趣的读者进一步钻研探索.本书可作为高等院校计算机、自动化及相关专业的本科生或研究生教材,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考.
《零基础学机器学习》
本书的目标,是让非机器学习领域甚至非计算机专业出身但有学习需求的人,轻松地掌握机器学习的基本知识,从而拥有相关的实战能力。

本书通过AI“小白”小冰拜师程序员咖哥学习机器学习的对话展开,内容轻松,实战性强,主要包括机器学习快速上手路径、数学和Python基础知识、机器学习基础算法(线性回归和逻辑回归)、深度神经网络、卷积神经网络、循环神经网络、经典算法、集成学习、无监督和半监督等非监督学习类型、强化学习实战等内容,以及相关实战案例。本书所有案例均通过Python及Scikit-learn机器学习库和Keras深度学习框架实现,同时还包含丰富的数据分析和数据可视化内容。

本书适合对AI感兴趣的程序员、项目经理、在校大学生以及任何想以零基础学机器学习的人,用以入门机器学习领域,建立从理论到实战的知识通道。

《机器学习公式详解》
周志华老师的《机器学习》(俗称“西瓜书”)是机器学习领域的经典入门教材之一。本书(俗称“南瓜书”)基于Datawhale成员自学“西瓜书”时记下的笔记编著而成,旨在对“西瓜书”中重、难点公式加以解析,以及对部分公式补充具体的推导细节。
全书共16章,与“西瓜书”章节、公式对应,每个公式的推导和解析都以本科数学基础的视角进行讲解,希望能够帮助读者达到“理工科数学基础扎实点的大二下学期学生”水平。每章都附有相关阅读材料,以便有兴趣的读者进一步钻研探索。
本书思路清晰,视角独特,结构合理,可作为高等院校计算机及相关专业的本科生或研究生教材,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考。

《机器学习的数学》
雷明,人工智能学习与实践平台SIGAI的创始人;2009年毕业于清华大学计算机系,获硕士学位,研究方向为机器视觉与机器学习;毕业后曾就职于百度公司,任不错软件工程师、项目经理。2012年加入zrnodo(深圳市智美达科技股份有限公司),任CTO与平台研发中心负责人;2018年2月创立SIGAI,其核心产品为云端实验室与知识库,为人工智能学习与实践提供便捷的一站式服务:在机器学习与深度学习、机器视觉、自然语言处理方向有扎实的理论功底与丰富的学术和产品研发经验,硕士期间曾发表论文数篇。
《机器学习》
周志华 教授,南京大学计算机系主任、人工智能学院院长、校学术委员会委员。欧洲科学院外籍院士。人工智能相关五大主流靠前学会ACM、AAAI、AAAS、IEEE、IAPR均入选Fellow的首位华人学者,中国计算机学会、中国人工智能学会会士。曾获IEEE计算机学会Edward J. McCluskey技术成就奖、CCF王选奖等。
《零基础学机器学习》
黄佳,新加坡埃森哲公司不错顾问,人工智能专家,机器学习和云计算不错工程师。计算机世界奖学金获得者,新加坡政府奖学金获得者。黄佳先生IT从业20年,参与过公共事业、医疗、金融等多领域大型人工智能项目,对政府、企业和*单位的数据智能化项目如何成功落地有着很好深刻的思考和洞见。
《机器学习公式详解》
谢文睿
北京工业大学硕士, 开源组织Datawhale 核心成员兼开源项目负责人,主要研究方向为机器学习与自然语言处理。

秦州
康奈尔大学计算机硕士,Datawhale重要贡献成员。阿里巴巴算法工程师,主要研究方向为图神经网络的研发和应用。CIKM 2019很好应用论文作者,开源图神经网络框架graph-learn核心开发者。

《机器学习》
《零基础学机器学习》
《机器学习的数学》
《机器学习公式详解》
【注】本套装以商品标题及实物为准,因仓位不同可能会拆单发货,如有需要购买前可联系客服确认后再下单,谢谢!

《机器学习的数学》
工欲善其事,必先利其器
自 1956 年达特茅斯会议至今,人工智能已发展 60 年有余。尤其在很这 10 年中,随着存 储能力和计算能力的不断提升,人工智能迎来了迅猛的发展,开始在金融、医疗、教育、公共安 全等方面发挥出巨大的作用。其中关于大数据、深度学习、智能芯片等新型领域的研究催生了刷 脸支付、智能音箱、以图搜图、智能翻译等新的应用场景和产品,这不仅推动了人类社会的进步, 还极大地改变了人们的生活。人工智能引领了一场崭新的技术变革,在科技的赋能下,诸多行业 将会快速发展。
放眼世界,人工智能正成为靠前竞争的新焦点。2018 年,欧盟委员会宣布在人工智能领域采 取三大措施,以促进相关的教育和培训体系升级。回首靠前,国务院于 2017 年发布了《新一代 人工智能发展规划》,提出了要建立新一代人工智能关键共性技术体系。现如今,学术界对人工 智能的研究方兴未艾,呈现出高校与企业共同发展、相辅相成的局面。我国各大知名高校(包括 清华大学、上海交通大学、南京大学、西安电子科技大学等)陆续成立了人工智能研究院/学院, 旨在推动人工智能在学术领域的发展。在工业界,不仅阿里巴巴、腾讯、百度等企业率先跻身于 人工智能领域,引领了人工智能技术在靠前的落地与发展,与此同时,以商汤、旷视、依图等为 代表的人工智能“独角兽”企业也在快速发展。人工智能技术的发展可期!
《机器学习的数学》一书覆盖了人工智能领域中与机器学习相关的数学知识体系,不仅囊括 了微积分和线性代数等基本数学原理,还详细讲解了概率论、信息论、很优化方法等诸多内容, 这些知识是机器学习中的目标函数构造、模型优化以及各种机器学习算法的核心和基础。本书希 望通过对数学知识的讲解帮助读者深刻理解算法背后的机理,并厘清各种算法之间的内在联系。 本书重视理论与实践相结合,在讲解数学知识的同时也对其在机器学习领域的实际应用进行了举 例说明,方便读者更具象化地理解抽象的数学理论,同时对机器学习算法有更深刻的认识。 本书语言精练,条理清晰,内容翔实全面,公式推导严格周密,将理论与工程实践相结合, 展示了机器学习方法背后的数学原理,是集专业性与通俗性为一体的上乘之作。通过本书,初学 者可以奠定扎实的数学基础,从而为后续掌握机器学习的具体技术和应用铺平道路。从业者也可 以利用本书强化巩固基础知识,从技术背后的数学本质出发来解决工程问题。
仰之弥高,钻之弥坚。人工智能的大厦越建越高,终会长久屹立于人类科技历史之中。开卷有 益,希望本书能够帮助读者认识和理解机器学习的数学原理,助力读者在人工智能领域大放异彩!
严骏驰
上海交通大学特别研究员

商品参数
基本信息
出版社 清华大学出版社 等
ISBN 9787302423287
条码 9787302423287
编者 周志华
译者
出版年月 2016-01-01 00:00:00.0
开本 20开
装帧 平装
页数 560
字数 626000
版次 1
印次 35
纸张
商品评论

暂无商品评论信息 [发表商品评论]

商品咨询

暂无商品咨询信息 [发表商品咨询]