热门搜索: 中考 高考 考试 开卷17
服务电话 024-96192/23945006
 

热障涂层破坏理论与评价技术(英文版)

编号:
wx1202755038
销售价:
¥434.13
(市场价: ¥499.00)
赠送积分:
434
数量:
   
商品介绍

本书内容是开始基于航空发动机热障涂层剥落瓶颈亟待解决的重大需求,从工程中提炼科学问题,致力于特别环境下涂层性能损伤表征、热-力-化耦合模型及环境模拟装置等物理力学应用基础研究,并将研究成果应用到工程解决实际问题。提出的界面断裂韧性屈曲表征与高温裂纹声发射实时检测方法,解决了界面性能不能科学表征、失效模式与过程接近未知的黑匣子问题;建立的热-力-化耦合氧化与CMAS腐蚀本构模型,打破了长期以来基于失效现象的定性分析模式;自主研制的CMAS高温接触角、高温振动、航空煤油式燃气冲击与实时测试、高速旋转与实时测试等装置,极大程度上解决了试车前接近没有考核设备的问题。

目录
Contents
1  Introduction  1
1.1  TBCs and the Corresponding Preparation Methods  2
1.1.1  TBC Materialsand Structures  2
1.1.2  TBC Preparation Methods  4
1.2  TBC Spallation Failure and Its MainIn.uencingFactors  9
1.2.1  Service Conditions for TBCs  9
1.2.2  TBC Spallation Failure and Its MainIn.uencing Factors  10
1.3  Solid Mechanics Requirements and Challenges Generated by TBC Failure  14
1.3.1  Solid Mechanics Requirements Generated by TBC Failure  14
1.3.2  Solid Mechanics Challenges Presented by TBC Failure  17
1.4  Content Overview  21
References  23
2  Basic Theoretical Frameworks for Thermo–Mechano-Chemical Coupling in TBCs  27
2.1  Continuum Mechanics  27
2.2  Theoretical Frameworkfor Thermo–Mechano-Chemical Coupling Basedon Small Deformation  30
2.2.1  Strain and Stress Measures BasedonSmall Deformation[5,6]  30
2.2.2  Stress–Strain Constitutive Relations Based onSmall Deformation[5,6]  47
2.2.3  Constitutive Theoryfor Thermomechanical CouplingBased on Small Deformation[11]  52
2.2.4  Constitutive Theory forThermo–Mechano-Chemical Coupling Basedon Small Deformation[16]  61
2.3  Theoretical Frameworkfor Thermo–Mechano-Chemical Coupling BasedonLarge Deformation  68
2.3.1  Kinematic Description[9]  68
2.3.2  Stressand StrainMeasures  71
2.3.3  Mass Conservation and Force Equilibrium Equations  74
2.3.4  Constitutive Theoryfor Thermomechanical Coupling Basedon Large Deformation[18,25,26]  80
2.3.5  Constitutive Theory for Thermo–Mechano-Chemical Coupling BasedonLarge Deformation  85
2.4  Summary and Out look  93
References  97
3  Nonlinear FEA of TBCs on Turbine Blades  99
3.1  FEAPrinciples  100
3.1.1  Functional Variational Principle  100
3.1.2  WeakFormof theEulerianFormulation  105
3.1.3  FEDiscretizati on of the Eulerian Formulation  108
3.1.4  WeakFormof theLagrangian Formulation  111
3.1.5  FE Discretizati on of the Lagrangian Formulation  113
3.1.6  WeakFormof the Arbitrary Lagrangian–Eulerian Formulation  116
3.1.7  Initial and Boundary Conditions  121
3.2  FE Modeling of TBCs on Turbine Blades  122
3.2.1  Geometric Characteristicsof Turbine Blades  122
3.2.2  Parametric Modelingof Turbine Blades  124
3.3  Mesh Generationfor Turbine Blades  140
3.3.1  Generationof Unstructured Meshes  141
3.3.2  Structured Meshes for Turbine Blades  145
3.4  Image-Based FE Modeling  150
3.4.1  Image-BasedFEM  151
3.4.2  2D TGO Interface Modeling  153
3.4.3  Porous Ceramic Layer Modeling  156
3.4.4  D3TGO Interface Modeling Method  157
3.5  Summaryand Outlook  158
References  159
4  Geometric Nonlinearity Theory for the Interfacial Oxidation of TBCs  163
4.1  Interfacial Oxidation Phenomenon andFailure  164
4.1.1  Characteristics and Patterns of Interfacial Oxidation  164
4.1.2  StressField Inducedby Interfacial Oxidation  167
4.1.3  Coating SpallationInducedby Interfacial Oxidation  170
4.2  TGO Growth Model Basedon Diffusion Reaction  172
4.2.1  Governing Equations  172
4.2.2  FESimulation  178
4.3  Thermo–Chemo–Mechanical CouplingAnalytical Model forInterfacial OxidationofTBCs  188
4.3.1  Thermo–Chemo–Mechanical Coupling Analytical Growth Model forInterfacial Oxidation  188
4.3.2  Thermo–Chemo–Mechanical Coupling Growth Constitutive Relations forInterfacial Oxidation  201
4.3.3  Analysis of theThermo–Mechano-Chemical CouplingGrowthPatterns and Mechanisms DuringInterfacialOxidation  222 References  232
5  Physically Nonlinear Coupling Growth and Damage Caused by Interfacial Oxidation in TBCs  235
5.1  Physically Nonlinear Model forThermo–Mechano–Chemical Coupling Growth Causedby Interfacial Oxidationin TBCs  236
5.1.1  Model Framework  236
5.1.2  Numerical Implementation  243
5.1.3  Resultsand Discussion  246
5.1.4  Analytical Coupling Model for Interfacial Oxidation  252
5.1.5  Comparison with Experimental Results  256
5.2  Interfacial Oxidation Failure Theorythat Integrates the CZM and PFM  262
5.2.1  Integrated CZM and PFM Framework  262
5.2.2  Introductionto PFM  263
5.2.3  Introductionto CZM for Phase-FieldCrack Interactions  267
5.2.4  Numerical Implementation  271
5.2.5  Resultsand Discussion  273
5.3  Summary and Out look  281
5.3.1  Summary  281
5.3.2  Outlook  283
References  283
6  Thermo–Mechano–Chemical Coupling During CMAS Corrosion in TBCs  287
6.1  Correlation Analysisof Molten CMASIn.ltration and Its KeyIn.uencingFactors  288
6.1.1  Theoretical Model for Mol ten CMASIn.ltration Depthin EB-PVD TBCs  288
6.1.2  Experimentsonthe MoltenCMASIn.ltration Depthinan EB-PVD TBC and Its In.uencing Factors  298
6.1.3  CMASIn.ltration Depthinthe EB-PVD TBC and ItsIn.uencing Factors  299
6.1.4  In.ltration of CMAS Meltsin an APS TBC  308
6.2  Microstructural Evolution, Deformation, and Composition Loss of Coatings Dueto Corrosion  312
6.2.1  Microstructural Evolution and Deformation ofCoatings  312
6.2.2  Thermo–Mechano–Chemical Coupling Theory forCMASIn.ltration and Corrosionin TBCs  321
6.2.3  Quantitative Characterizationofthe Distribution Pattern ofYin TBCs Subjected to CMAS Corrosion  328
6.3  Phase-StructureCharacterization and Phase-FieldTheory forCMASCorrosionofCoatings  336
6.3.1  XRD Characterization of theEvolution of theCoating PhaseStructure  336
6.3.2  TEM Characterization of the Microstructural EvolutionofCoatings  338
6.3.3  Thermo–Mechano–Chemical Coupling Phase-TransformationTheoryfor Corroded Coatings During theCoolingProcess  341
6.4  SummaryandOutlook  349
References  350
7  Erosion Failure Mechanisms of TBCs  355
7.1  ErosionFailure Phenomenain TBCs  355
7.1.1  Failure Phenomenain TBCs  356
7.1.2  TBCErosionRate   356
7.1.3  Comparison of the Erosion Performance ofVariousCoatings  357
7.1.4  GeneralPattern of theErosion Performance of TBCs  358
7.2  ErosionFailure ModesofTypical TBCs  360
7.2.1  ErosionFailure Modesof EB-PVD TBCs  360
7.2.2  ErosionFailureModeofAPSTBCs[1,15,21]  362
7.2.3  ErosionFailure Mode of PS-PVD TBCs [15, 26–28,34,35]  364
7.2.4  CMASErosionFailureof TBCs  365
7.2.5  FactorsAffectingthe Erosion Performance of TBCs  366
7.3  Numerical Simulation of the Correlations Between theErosionParametersof TBCs  368
7.3.1  Dimensional Analysis Theory  369
7.3.2  Dimensional Analysisof Erosionin TBCs  371
7.3.3  Numerical SimulationAnalysisoftheCorrelations BetweenErosionParameters  373
7.4  Erosion Failure Behavior Analysis Considering MicrostructuralEffects  377
7.4.1  Numerical Model of theTrue Microstructure of anEB-PVDTBC  378
7.4.2  Yield Conditions Consideringthe Microstructure  379
7.4.3  CorrelationAnalysis ofVariousParameters in theErosion Process  380
7.4.4  AnalysisofTypical ErosionFailure Modes  383
7.5  ErosionFailure Mechanisms and Resistance Indices of TBCs  390
7.5.1  Erosion Resistance Index ofEB-PVD TBCs  391
7.5.2  Resistance IndexofAPS TBCs  394
7.6  ErosionFailure Mechanism DiagramsofTBCs  395
7.6.1  EstablishmentofaFailure Mechanism Diagram froma Theoretical Perspective  396
7.6.2  Establishment ofFailure Mechanism Diagrams fora CertainFailure Mode fromaNumerical Simulation Perspective  400
7.7  SummaryandOutlook  405
7.7.1  Summary  405
7.7.2  Outlook  405
References  406
8  Basic Mechanical Properties of TBCs and Their Characterization  409
8.1  InSitu Measurement of theElastic Behavior of EB-PVD TBCs  410
8.1.1  DIC-Based MicrobendingTesting  410
8.1.2  Analysis of theExperimental and Numerical SimulationResults  414
8.1.3  Factors Affecting the Elastic Modulus Measurement Accuracy  417
8.2  Temporal and SpatialCorrelations Between theMechanical Properties and MicrostructureofTBCs  419
8.2.1  Principle of the HSNM Technique in theCharacterization of Microstructure andTemporal and SpatialCorrelations  420
8.2.2  HSNM and DeconvolutionTechniques  421
8.2.3  Characterizationofthe Mechanical Properties of BC Layers and Ceramic Coatings by HSNM  424
8.2.4  Characterization of the PhaseDistribution of the Microstructure of the TBC Based on Deconvolution  428
8.3  Creep Behaviorof TBCs  432
8.3.1  High-TemperatureCreep Behavior of EB-PVD TBCs  432
8.3.2  Creep Behaviorof TGOs UnderTensile Stress  435
8.3.3  Effects of the Creep Behavior of TBCs onInterfacialStresses   439
8.4  SummaryandOutlook  442
8.4.1  Summary  442
8.4.2  Outlook  443
References  444
9  Fracture Toughness Characterization of TBCs  447
9.1  Surface FractureToughness KIC Characterization ofTBCs  448
9.1.1  De.nitionofFractureToughness  448
9.1.2  Surface KIC Characterizationofthe PureCeramic Surfaceof TBCs Usingthe SENB Method  448
9.1.3  Surface KIC Characterization ofTBCs Using Three-Point Bending Combined with Acoustic Emission  454
9.2  Conventional Methods forCharacterizingthe Interfacial KICof TBCs  461
9.2.1  Theoretical Model for the Interfacial KIC CharacterizationofTBCs  461
9.2.2  InterfacialKIC Characterization ofTBCs Using theThree-Point Bending Method  464
9.3  Surface and Interfacial KIC Characterization ofTBCs Usingthe IndentationMethod  466
9.3.1  Surface KIC Characterization ofTBCs Using theIndentationMethod  466
9.3.2  InterfacialKIC Characterization ofTBCs Using theIndentationMethod  468
9.4  Interfacial KIC Characterization of TBCs Using theBucklingMethod  470
9.4.1  BucklingTestfor Determiningthe InterfacialKIC of TBCs  470
9.4.2  FESimulationfor theBucklingofTBC Interfacial KIC  477
9.4.3  Theoretical Model for the TBC InterfacialKIC CharacterizationBased on Buckling Delamination  482
9.5  InterfacialKIC CharacterizationofTBCsby theBlisterTest  487
9.6  InSituKIC CharacterizationofTBCsatHighTemperatures  495
9.6.1  Surface KIC Characterization ofTBCs at High Temperaturesby Indentation  496
9.6.2  KIC Characterization of TBCs at High Temperaturesby theThree-Point BendingTest  499
9.7  SummaryandOutlook  508
9.7.1  Summary  508
9.7.2  Outlook  509
References  509
10  Residual Stresses in TBCs  513
10.1  FormationofResidual Stressesin TBCs  513
10.1.1  Causesof Residual Stressesin TBCs  513
10.1.2  In.uencingFactorsof the Residual Stresses in TBCs  514
10.2  Simulation and Predictionofthe Residual Stressesin TBCs  518
10.2.1  Stress Field Evolution and Danger Zone Predictionof aTurbineBlade witha TBC  519
10.2.2  AnalysisoftheStressFieldintheTurbine Blade with a TBC Using the Fluid–Solid Coupling Method  522
10.3  DestructiveCharacterization of the Residual Stresses in TBCs  541
10.3.1  Characterizationbythe CurvatureMethod  541
10.3.2  Characterizationbythe Drilling Method  544
10.3.3  CharacterizationbytheRCM  553
10.4  NondestructiveCharacterizationofthe Residual Stresses in TBCs  558
10.4.1  XRDCharacterization  558
10.4.2  CharacterizationbyRaman Spectroscopy  565
10.4.3  CharacterizationofResidual Stressesinthe TGO Layerby PLPS  566
10.5  SummaryandOutlook  574
10.5.1  Summary  574
10.5.2  Outlook  575
References  575
11  Real-Time Acoustic Emission Characterization of Cracks in TBCs  579
11.1  High-TemperatureAE DetectionMethod  580
11.1.1  Basic PrincipleofAEDetection  580
11.1.2  Waveguide Rod/WireTransmissionTechnique forComplex High-TemperatureEnvironments  580
11.1.3  AESignal DetectionMethod BasedonRegional Signal Selection  583
11.2  Analysis of theKeyParameters forCrackPattern Recognition  585
11.2.1  KeyFailure ModesofTBCsandtheTime-Domain Characteristicsofthe RelevantAE Signals  585
11.2.2  Pattern RecognitionofTBCFailure Modes Based on Characteristic Frequencies  585
11.2.3  Extraction of the CharacteristicParameters forPattern RecognitionBased on ClusterAnalysis  588
11.3  Intelligent CrackPattern RecognitionMethods Based onWaveletsandNeuralNetworks  597
11.3.1  Basic Principle and MethodofWT  598
11.3.2  Wavelet Analysis of AE Signalsfrom TBCs Due toDamage  609
11.3.3  NN-BasedIntelligent Method forPattern RecognitionofAESignals  613
11.4  QuantitativeEvaluationoftheKeyDamagein TBCs  620
11.4.1  Basic Approach for Damage Quanti.cation   620
11.4.2  Quantitative Analysis of the Surface Crack Density  621
11.4.3  Quantitative Analysisof theInterface Cracks  627
11.5  DeterminationofTBCFailure MechanismsBasedonAE Detection  631
11.5.1  Failure Mechanisms Under ThermalCycling  631
11.5.2  Failure Mechanism Under High-Temperature CMASCorrosion  637
11.5.3  Failure Mechanism Under GasThermal Shock  644
11.6  SummaryandOutlook  651
11.6.1  Summary  651
11.6.2  Outlook  652
References  653
12  Characterization of the Microstructural Evolution of TBCs by Complex Impedance Spectroscopy  657
12.1  Basic PrincipleofCharacterizationbyCIS  658
12.1.1  PrincipleofCIS  658
12.1.2  Analysisof theImpedance Responsesof TBCs  659
12.2  Numerical Simulationofthe ComplexImpedance Spectral CharacteristicsofTBCs  665
12.2.1  FEPrincipleofCIS  665
12.2.2  FEModel forthe ComplexImpedance Spectrum of aTBC  668
12.2.3  Complex Impedance SpectralCharacteristics of TBCs  669
12.2.4  Asymmetric Electrode ErrorCorrection Models  677
12.3  ParametricOptimizationofCIS for TBCs  682
12.3.1  FESimulation and Impedance Measurement  682
12.3.2  OptimalACVoltageAmplitude  682
12.3.3  EffectsoftheTestTemperature and OptimalTest Temperature  683
12.3.4  EffectoftheElectrodeSize  686
12.3.5  Summary  687
12.4  CharacterizationofInterfacial Oxidationin TBCsby CIS  687
12.4.1  Equivalent Circuitfor Interfacial Oxidation in TBCs  688
12.4.2  Measurement of theComplex Impedance Spectrumof a TBC  689
12.4.3  CharacterizationofInterfacial OxidationbyCIS  694
12.5  CharacterizationofCMASCorrosionin TBCs with CIS  703
12.5.1  Measurement of theComplex Impedance Spectra of CMAS asWell as Uncorroded and CMAS-Corroded TBCs  704
12.5.2  Complex Impedance SpectrumCharacteristics ofCMAS  705
12.5.3  Complex Impedance Response of theCMAS-Corroded TBC  706
12.6  SummaryandOutlook  711
12.6.1  Summary  711
12.6.2  Outlook  712
References  712
13  Nondestructive Testing of the Surface and Interfacial Damage and Internal Pores of TBCs  715
13.1  Characterizationofthe Strain Fieldsof TBCs UsingDIC  716
13.1.1  Basic Principle of DIC Characterization oftheStrainField  716
13.1.2  PreparationofDigital Speckles  718
13.1.3  DIC/AE-Combined Method forFailure Criterion Analysis  720
13.1.4  DIC Characterizationofthe High-Temperature Strain Fieldin TBCs  721
13.1.5  DIC Characterizationofthe High-Temperature CMAS Corrosion-Induced Strain Fieldina TBC  727
13.1.6  Evolution ofthe Cross-Sectional Strain Field in TBCs Coated with Different AmountsofCMAS  735
13.1.7  Evolutionofthe Surface Strain Fieldina TBC Subjectedto CMAS Corrosion  740
13.2  X-rayCTCharacterizationofthe Poresin TBCs UnderVA Corrosion  744
13.2.1  PrincipleoftheCT Characterizationofthe Internal StructureofanObject  744
13.2.2  Extraction of Pores in TBCs and 3D ReconstructionofCTImages  747
13.2.3  CTCharacterizationoftheEvolutionofPores in TBCs UnderVACorrosion  749
13.3  IRTNDTTechnique and ItsCurrent ApplicationStatus  757
13.3.1  PrincipleofIRT  757
13.3.2  IRT-BasedDamageDetection  759
13.4  SummaryandOutlook  780
13.4.1  Summary  780
13.4.2  Outlook  781
References  781
14  Thermal Insulation Effect of TBCs on Turbine Blades  785
14.1  Theoretical Analysisof theThermalInsulationEffect  785
14.1.1  HeatTransferModesofTurbine Blades  787
14.1.2  De.nitionof the ThermalInsulationEffect of TBCs onTurbine Blades  790
14.1.3  Nondimensionalizationofthe ThermalInsulation Effect  791
14.2  Numerical Simulationofthe ThermalInsulationEffect  794
14.2.1  Coupled HeatTransfer  796
14.2.2  Turbulence Models  799
14.2.3  Numerical Simulationofthe ThermalInsulation Effectof TBCs  801
14.3  TestingMethods forthe ThermalInsulationEffect  805
14.3.1  Setups forSimulatingthe Service Environment ofTurbine Blades  806
14.3.2  Real-TimeTemperatureMeasurementTechniques forTurbine Blades  810
14.3.3  AnExperimentalInvestigationofthe Thermal InsulationEffectofa TBC onaTurbine Blade  815
14.4  FactorsIn.uencing theThermalInsulationEffect  820
14.4.1  In.uentialFactorsRelatedtotheMaterial  820
14.4.2  In.uencingFactorsRelated to the Service Environment  823
14.4.3  In.uencingFactorsRelated to theCooling Structure  824
14.5  SummaryandOutlook  826
References  827
15  Reliability Assessment of TBCs  831
15.1  Basic Reliability Theoryfor TBCs  832
15.1.1  Randomness and DistributionofProperty, Structural, andEnvironmentalParameters  832
15.1.2  De.nitionofReliability  834
15.1.3  Reliability Index and ItsGeometric Meaning  837
15.1.4  Reliability Sensitivity  839
15.2  Reliability CalculationMethods for TBCs  840
15.2.1  Second-Moment Methods  840
15.2.2  MonteCarlo Methods  844
15.2.3  MeanValueMethod and Advanced MeanValue Method  846
15.2.4  Software-Based Numerical Calculation of theReliability  848
15.3  Reliability Predictionfor TBCs Under ThermalCycling Stresses  851
15.3.1  Failure Criterion and LimitState Equation  851
15.3.2  DistributionsofBasicVariables  852
15.3.3  Predictionofthe SpallationFailure Probability of TBCs Under Thermal Cycling, pf,tc  852
15.3.4  Reliability Sensitivity Analysis  854
15.4  Reliability Assessment of TBCs Under Interfacial Oxidation  855
15.4.1  FailureCriterion  856
15.4.2  Analysis of theStatistical Characteristics ofParameters In.uencing Interfacial Oxidation  857
15.4.3  Reliability and Sensitivity Analysis of TBCs Under Interfacial OxidationBased on theSOSM Method  858
15.5  Reliability Assessmentof TBCsAgainstErosionFailure  859
15.5.1  Erosion Rate Model and Reliability Analysis Criterion for TBCs onTurbineBlades  859
15.5.2  Method forCalculatingthe ErosionReliability of TBCs onTurbine Blades  862
15.5.3  Statistical Analysis ofParameters Affecting ErosionFailure  869
15.5.4  Erosion Failure Probability Prediction and Sensitivity Analysis of TBCs onTurbine Blades  871
15.6  SummaryandOutlook  873
15.6.1  Summary  873
15.6.2  Outlook  874
References  874
16  Experimental Simulators for the Service Environments of TBCs  879
16.1  Experimental Simulators forThermalLoads on TBCs  880
16.1.1  Experimental Simulator for Automatic High-TemperatureThermalCycling  880
16.1.2  Facilitiesfor Measuringthe High-Temperature Contact AngleofCMAS Duringthe CMAS Corrosion Process  882
16.2  Combined Thermomechanical LoadingFacility for TBCs and BucklingFailure Mechanism of TBCs Under Thermomechanical Loading  887
16.2.1  Combined Thermomechanical LoadingTesting Facilities  888
16.2.2  Buckling Failure Modes of TBCs Under Thermomechanical Loading  890
16.3  Static Thermo–Mechano-Chemical CouplingSimulators for TBCs onTurbine Blades  898
16.3.1  Overall Design of an Experimental TMCC Simulation andTestingFacility for TBCs onTurbine Blades  898
16.3.2  Introductiontothe Functions of SeveralTypical ExperimentalFacilities  902
16.3.3  Experimental TMCC Simulation and Real-Time TestingMethods  907
16.4  Dynamic Experimental TMCC Simulation andTesting Facilitiesfor TBCs onTurbineBlades  915
16.4.1  Overall Design of Dynamic Experimental TMCC Simulation andTestingFacilitiesfor TBCs onTurbine Blades  915
16.4.2  MainProgressin Dynamic Experimental TMCC Simulation andTestingFacilities  918
16.4.3  Method and Performance of Dynamic Experimental TMCC Simulation andTesting  926
16.5  Experimental High-TemperatureVibrationSimulators for TBCs onTurbine Blades  929
16.5.1  High-TemperatureVibrationFacilities  929
16.5.2  Testing of TBCs Under High-Temperature Vibration  930
16.6  SummaryandOutlook  931
16.6.1  Summary  931
16.6.2  Outlook  932
References  932

商品参数
基本信息
出版社 科学出版社
ISBN 9787030733290
条码 9787030733290
编者 周益春,杨丽,朱旺
译者 --
出版年月 2022-10-01 00:00:00.0
开本 B5
装帧 简装
页数 952
字数 800000
版次 1
印次
纸张 一般胶版纸
商品评论

暂无商品评论信息 [发表商品评论]

商品咨询

暂无商品咨询信息 [发表商品咨询]